CHALCOGENS Section - 2

Group 16

Ionization Enthalpy

The first ionization enthalpies of the elemetrits of group 16 are unexpectedly lower than those of corresponding elements of group 15 despite their smaller atomic radii and higher nuclear charge.

Normally as the atomic radii decreases or nuclear charge increases along a period, the ionization enthalpy is expected to increase. But the ionization enthalpy of these elements is smaller than those of group 15 elements. This is due to the relatively symmetrical and stable electronic configuration of the elements of group 15 as compared to the elements of group 16 (oxygen family). e.g.

Group 15 element

$$N(Z = 7) 1s^2 2s^2 2p_x^{-1} 2p_y^{-1} 2p_z^{-1}$$
 (more symmetrical, stable)

Group 16 element

O(
$$Z = 8$$
) 1s² 2s² 2p_x² 2p_y¹ 2p_z¹ (less symmetrical, less stable)

Therefore, first ionization enthalpy values of elements of oxygen family are smaller.

Metallic Character

Because of high ionization enthalpy values, the elements of group 16 are less metallic. However, as we move down the group, the ionization enthalpy decreases and hence the metallic character increases.

Electronegativity

The elements of group 16 have higher values of electronegativity than the corresponding elements of group 15. Oxygen is the second most electronegative element, the first being fluorine.

Bonding

Oxygen can form strong $p\pi$ - $p\pi$ double bonds. The double bonds formed by other elements becomes weaker as the atomic number increases. Thus CO₂ is stable, CS₂ is less stable, CSe₂ polymerises and CTe₂ is unknown.

S, Se, Te, Po can even form 4 or 6 bonds unlike oxygen due to the presence of d-orbitals. S forms strong $d\pi$ -p π bond with O due to its small sized d-orbital which is similar to the p-orbital of O in size.

Hydrogen bonding is important for oxygen compounds.

Hydrides

$$\underbrace{H_2O}_{liquid}, \underbrace{H_2S, \, H_2Se, \, H_2Te, \, H_2Po}_{colourless \; toxic \; gases \; with \; foul \; smell.}$$

As we go down the group, $\Delta_f H$ of hydrides becomes more positive and bonding orbitals diffuse on becoming larger. This decreases stability and thus increases acidity down the group.

H₂S, H₂Se, H₂Te use almost pure p-orbitals for bonding as is indicated by their H-E-H bond angles which are close to 90°.

The boiling points usually increase as the atoms become larger and heavier but boiling point of H_2O is abnormally high due to extensive hydrogen bonding in solid and liquid state. Thus the order is:

$$H_2O >> H_2Te > H_2Se > H_2S.$$

Halides

Elements of this group form dihalides, tetrahalides and hexahalides. Among hexahalides only hexafluorides are stable.

- \triangleright SF₄ is a powerful fluorinating agent.
- > SCl₂ is a foul smelling red liquid. It forms poisonous 'mustard gas' which is NOT a gas but a volatile liquid.

$$2CH_2 = CH_2 + SCl_2 \longrightarrow S(CH_2CH_2Cl)_2$$
 ethene Bis (2-Chloroethyl) sulphide (Mustard gas)

Oxygen and its Compounds

Preparation:

O₂ is a colourless, odourless and tasteless gas which is partially soluble in water. Liquid dioxygen is pale blue in colour and the solid is also blue. It is paramagnetic due to presence of unpaired electrons.

- 1. It is prepared industrially by the electrolysis of acidic or alkaline H₂O or by *Claud's Process* (fractional distillation of liquid air)
- 2. In laboratory it is prepared from thermal decomposition of KClO₃ or Pb(NO₃)₂.

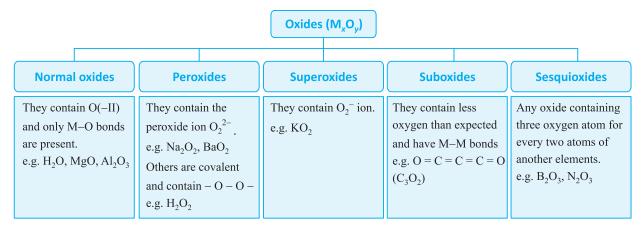
$$2 \text{ KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KCl} + 3 \text{O}_2 + \text{traces of Cl}_2, \text{ ClO}_2$$

$$Pb(\text{NO}_3)_2 \xrightarrow{\Delta} PbO + \text{NO}_2 + \text{O}_2$$

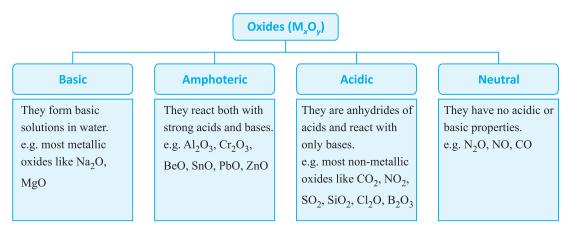
3. It can also be made by catalytic decomposition of hypochlorites:

$$2 \, \text{HOCl} \xrightarrow{\text{Co}^{2+}} \text{HCl} + \text{O}_2 \uparrow$$

$$\text{CaOCl}_2 \xrightarrow{\Delta} \text{CaCl}_2 + \text{O}_2 \uparrow$$
bleaching powder


Uses:

Most of the O_2 is used in the steel making industry. Some of it is used in oxy-acetylene welding and as an oxidant in rockets. It is an essential constituent of life.

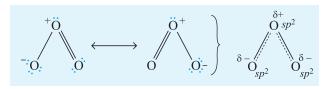

[a] Oxides and their general properties

Dioxygen reacts with practically all elements to form oxides. The reactions are usually exothermic and once started often continue spontaneously.

Classification of oxides according to geometric structure:

Classification of oxides according to acid-base properties:

> If an element exists in several oxidation states then generally lower ones are basic and higher ones are acidic


$$\begin{array}{c} N_2O, NO \\ \hline neutral \\ \hline \end{array}, \quad \begin{array}{c} N_2O_3, NO_2, N_2O_5 \\ \hline acidic \\ \hline \\ CrO \\ \hline basic \\ \hline \end{array}, \quad \begin{array}{c} Cr_2O_3 \\ \hline amphoteric \\ \hline \end{array}, \quad \begin{array}{c} CrO_3 \\ \hline acidic \\ \hline \\ PbO \\ \hline \\ more \ basic \\ \hline \end{array}$$

The order of acidic strength of oxides can be obtained as follows:

The further apart two oxides are in the series, the more stable the compound formed when they react together. Example: CaO + H_2O + SO_3 \longrightarrow more stable $CaSO_4$ (CaO . SO_3)

[b] Ozone O₃

O₃ is an unstable, dark blue diamagnetic toxic gas. The colour is due to intense absorption of red light. It also absorbs strongly in the UV region.

For each O atom, of the three sp^2 orbitals two are occupied by two lone pairs and one forms σ -bond. The remaining 4 electrons form π -bonds. The π system is thus a $4e^-3$ centre bond.

Bond order = 1.5 for O – O bonds.

Preparation:

O₃ is prepared by the action of a silent electric discharge upon dioxygen in an ozoniser.

$$3O_3 \xrightarrow{\text{silent electric}} 2O_3 (10\%) \xrightarrow{\text{fractional distillation}} O_3(\text{pure}) \qquad \Delta H > 0 \text{ (endothermic)}$$

Silent electric discharge is used because sparking can generate heat and decompose O₂.

Chemical Properties:

- 1. O₃ turns starch iodide paper blue.
- 2. The amounts of O₃ in a gas mixture is determined by passing gas into KI solution buffered with a borate buffer (pH 9.2)

Iodine liberated is titrated with sodium thiosulphate.

$$O_3 + 2K^+ + 2I^- + H_2O \longrightarrow I_2 + KOH + O_2$$

Alternatively, it is decomposed catalytically and the change in volume measured.

$$2\mathrm{O}_3 \longrightarrow 3\mathrm{O}_2$$
 2 volumes 3 volumes

- **3.** Hg in the presence of ozone is oxidised to sub-oxide and starts sticking to glass and loses its meniscus. This is used as a test for ozone called 'Tailing of Mercury'
- **4.** O_3 is an extremely powerful oxidising agent, second only to F_2 .

$$3 \text{PbS} + 4 \text{O}_3 \longrightarrow 3 \text{PbSO}_4$$
 $2 \text{NO}_2 + \text{O}_3 \longrightarrow \text{N}_2 \text{O}_5 + \text{O}_2$
 $2 \text{KOH} + 5 \text{O}_3 \longrightarrow 2 \text{KO}_3 + 5 \text{O}_2 + \text{H}_2$
Potassium
ozonide
(Orange solid)

5. O₃ reduces peroxides

$$O_3 + BaO_2 \longrightarrow BaO + 2O_2$$

$$O_3 + H_2O_2 \longrightarrow H_2O + 2O_2$$

Uses:

It is used as a disinfectant for water. Its advantage over chlorine is that it avoids unpleasant smell and taste of chlorine, since any excess O_3 decomposes to O_2 .

[c] Hydrogen Peroxide H,O,:

Pure H₂O₂ is a colourless liquid (like water), more hydrogen bonded than water (and thus has highest boiling point)

Preparation:

1. At one time H_2O_2 was obtained by electrolysis of H_2SO_4 or $(NH_4)_2SO_4$ using high current density.

$$2{SO_4}^{2-} \xrightarrow{electrolysis} {S_2O_8}^{2-} + 2e^-$$

$$H_2S_2O_8 + 2H_2O \longrightarrow 2H_2SO_4 + H_2O_2$$
 Peroxodisulphuric acid

2. Now, it is produced industrially by a cyclic process.

OH OH
$$O_2$$
 O_3 O_4 O_5 O_5 O_6 O_7 O_8 O_8 O_8 O_9 O_9

H₂O₂ is extracted with water as 1% solution which is concentrated to 30% solution.

3. In laboratory:

$$Na_2O_2 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O_2 \xrightarrow{cool} Na_2SO_4 . 10H_2O_2 \text{ crystals (dil, cold)}$$

OR
$$BaO_2 + CO_2 + H_2O \longrightarrow BaCO_3 \downarrow + H_2O_2$$
 (Merck's Process)

Chemical Properties:

1. H_2O_2 decomposes in presence of impurities like Fe^{2+} , Fe^{3+} , Ni^{2+} , Pt. to undergoes a disproportionation reaction:

$$2H_2O_2 \longrightarrow 2H_2O + O_2$$

Glycerol or acetanilide is added to check its decomposition.

2. In most of its reactions H_2O_2 acts as a strong oxidising agent (slow in acidic medium while fast in alkaline).

$$\begin{array}{c} H_2O_2 + 2Fe^{2+} \longrightarrow 2Fe^{3+} + 2H_2O \\ H_2O_2 + 2\left[Fe(CN)_6\right]^{4-} \longrightarrow 2\left[Fe(CN)_6\right]^{3-} + 2OH^- \\ \text{Ferrocyanide} & \text{Ferricyanide} \\ \\ H_2O_2 + SO_3^{2-} \longrightarrow SO_4^{2-} + H_2O \\ \\ \left[4H_2O_2 + Cr_2O_7^{2-} + 2H^+ \longrightarrow 2CrO_5 + 5H_2O \\ \text{Chromium peroxide} \\ \text{(blue)} \\ \\ 4CrO_5 + 12H^+ \longrightarrow 4Cr^{3+} + 6H_2O + 7O_2^{\uparrow} \end{array}$$

3. H_2O_2 is forced to act as a reducing agent with stronger oxidising agents and O_2 is evolved.

$$5 \text{H}_2 \text{O}_2 + 2 \text{MnO}_4^- + 6 \text{H}^+ \longrightarrow 2 \text{Mn}^{2+} + 8 \text{H}_2 \text{O} + 5 \text{O}_2 \uparrow$$

$$\text{H}_2 \text{O}_2 + \text{KIO}_4 \longrightarrow \text{KIO}_3 + \text{H}_2 \text{O} + \text{O}_2 \uparrow$$

 H_2O_2 is useful to counteract chlorine:

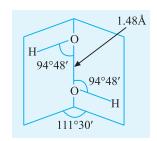
$$H_2O_2 + Cl_2 \longrightarrow 2HCl + O_2$$

4. H_2O_2 is a mild bleaching agent for hair feathers due to the oxidation reaction :

$$H_2O_2 \longrightarrow H_2O + [O]$$

5. Qualitative Analysis: It is detected qualitatively by its action on KI.

$$KI \xrightarrow{H_2O_2} I_2 \xrightarrow{starch} blue$$


It also forms blue CrO₅ with Cr₂O₇²⁻/H⁺ and decolourises KMnO₄.

Structure:

It is proposed H₂O₂ is a tautomeric mixture of two forms:

$$H - O - O - H \rightleftharpoons H O \rightarrow O$$

It shows restricted rotation about O - O bond due to repulsion between two H's. The structure is same in liquid and gaseous forms but angles and bond lengths change due to hydrogen bonding.

Structure of H₂O₂ in the gas phase.

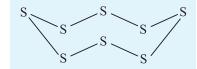
Sulphur and its Compounds

Allotropy:

Sulphur has the maximum number of allotropic structures. The two common crystalline forms are:

(i) α -Rhombic sulphur :

It is a yellow solid stable at room temperature, m.p. 112.8°C and specific gravity 2.06 g/cc.


(ii) β -Monoclinic sulphur :

It is a colourless solid stable above 95.5°C, mp 120°C and specific gravity 1.98 g/cc.

Note:
$$\alpha$$
-sulphur $\xrightarrow{\text{heat}} \beta$ -sulphur.

At 95.5°C (transition temperature both forms are stable).

Both α and β forms contain puckered S_8 rings in crown conformation.

Other allotropic forms are:

(iii) Engels sulphur (Σ -sulphur) :

It is unstable and has S₆ rings in chair conformation.

$$Na_2S_2O_3 + conc. HC1 \xrightarrow{Toluene} S$$

(iv) Plastic sulphur (χ -sulphur):

It is elastic, dark coloured and obtained by pouring liquid sulphur into water. It can be moulded with fingers.

(v) Colloidal sulphur:

It is prepared by passing H₂S gas into an oxidising solution like HNO₃, FeCl₃,

$$2 \text{HNO}_3 + \text{H}_2 \text{S} \longrightarrow \text{S} \downarrow + 2 \text{NO}_2 \uparrow + \text{H}_2 \text{O}$$

 $\textbf{Note:} \ \alpha,\beta,\Sigma \text{ - sulphur are soluble in } CS_2 \text{ and insoluble in water while } \chi \text{ - sulphur is insoluble in both } CS_2 \text{ and water.}$

Extraction:

Sulphur is obtained from natural gas plants (which contain H_2S) and from metal sulphide ores (especially iron pyrites FeS_2) which produce SO_2 .

$$2H_2S + O_2 \longrightarrow 2SO_2 + 2H_2O$$

$$SO_2 + 2H_2S \longrightarrow 2H_2O + 3S$$

Uses:

Almost 90% of S produced is used to manufacture H_2SO_4 . The rest is used in vulcanizing of rubber, making fungicides, gunpowder etc.

[a] Hydrogen sulphide H₂S (Sulphuretted Hydrogen)

It is a colourless, poisonous gas, soluble in H₂O and smells of rotten eggs.

Preparation:

It is easier to make H₂S by the action of mineral acids on metal sulphides.

$$FeS + H_2SO_4 \longrightarrow FeSO_4 + H_2S \uparrow$$

$$Sb_2S_3 + 6HCl \longrightarrow 2SbCl_3 + 3H_2S \uparrow$$
pure

Chemical Properties:

1. It burns with blue flame.

$$2H_2S + O_2 \longrightarrow 2H_2O + 2SO_2$$
excess

A saturated solution of H₂S is slowly oxidised by air and sulphur is deposited.

$$2H_2S + O_2$$
 (limited) $\longrightarrow 2H_2O + 2S$

2. It is a very weak dibasic acid.

$$H_2S + NaOH \longrightarrow NaHS + H_2O$$
; $NaHS + NaOH \longrightarrow Na_2S + H_2O$

The two salts NaHS, Na₂S are basic and soluble in water.

3.
$$H_2S + NH_3 \longrightarrow (NH_4) HS (not (NH_4)_2S)$$

Yellow ammonium sulphide is a mixture of ammonium polysulphides and is made by dissolving sulphur in colourless $(NH_4)HS/NH_3$ solution. This solution is used to precipitate metal sulphides in qualitative analysis.

4. H₂S is a reducing agent and reduces Cl₂ to Cl⁻, H₂SO₄ to SO₂, FeCl₃ to FeCl₂ and itself gets oxidised to S.

$$H_2S + Cl_2 \longrightarrow 2HCl + S$$
 $H_2S + H_2SO_4 \longrightarrow SO_2 + 2H_2O + S$
 $H_2S + 2FeCl_3 \longrightarrow 2FeCl_2 + 2HCl + S$

[b] Sulphur Dioxide SO,

It is a colourless poisonous gas with a choking smell. It is highly soluble in water and almost completely present as SO_2 . 6 H_2O in water and only 1% as H_2SO_3 . Liquid SO_2 has also been used as a non-aqueous solvent.

Preparation:

1. It is prepared by burning S or H₂S in air.

$$S + O_2 \longrightarrow SO_2$$

$$2H_2S + 3O_2 \longrightarrow 2SO_2 + 2H_2O$$
excess

2. It is also prepared by roasting various metal sulphides in smelters.

$$2ZnS + O_2 \longrightarrow 2ZnO + 2SO_2$$

$$4FeS_2 + 11O_2 \longrightarrow 2Fe_2O_3 + 8SO_2$$

Chemical Properties:

1. Most of SO₂ is oxidized to SO₃ by the contact process and used to manufacture H₂SO₄.

$$2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3 \qquad \Delta_r H^{\Theta} = -196.6 \text{ kJ/mol}$$

2. Bleaching action:

$$SO_2 + H_2O \longrightarrow H_2SO_4 + [H]$$

Bleaching by SO₂ is temporary as reduced colour is reoxidised by air to give black coloured matter.

Also, H₂SO₄ produced during bleaching may be harmful to fibres.

$$X - OH + SO_2 \longrightarrow XHSO_3 \xrightarrow{HCl} XCl \xrightarrow{H_2O} XOH$$
coloured colourless colourec

Cl₂ although has a permanent effect as it produces [O].

3. It shows reducing properties in presence of moisture.

$$SO_2 + Cl_2 + 2H_2O \longrightarrow H_2SO_4 + 2HCl$$

 $5SO_2 + 2KIO_3 + 4H_2O \longrightarrow K_2SO_4 + 4H_2SO_4 + I_2$

Although with stronger reducing agents it acts as an oxidising agent.

$$2H_2S + SO_2 \longrightarrow 2H_2O + 3S \downarrow$$

 $3Fe + SO_2 \longrightarrow 2FeO + FeS$

Detection of SO₂:

It may be detected in three ways in the laboratory:

- 1. By its choking smell
- 2. It turns filter paper moistened with $K_2Cr_2O_7/H^+$ green.

$$\begin{array}{c} K_2Cr_2O_7 + 3SO_2 + H_2SO_4 & \longrightarrow Cr_2(SO_4)_3 + K_2SO_4 + H_2O \\ \text{orange} & \text{green} \end{array}$$

3. It turns starch iodate paper blue.

$$2\,\text{KIO}_3 + 5\,\text{SO}_2 + \text{H}_2\text{O} \longrightarrow \text{I}_2 + 2\,\text{KHSO}_4 + 3\,\text{H}_2\text{SO}_4 \\ \text{turns starch}$$

Quantitative Analysis:

 SO_2 is determined quantitatively by first converting to H_2SO_4 and then determining H_2SO_4 by titration or conductimetric titration.

$$SO_2 + H_2O_2 \longrightarrow H_2SO_4$$

Structure:

 $3d_{z^2}$ orbital of S cannot be used to form π bond as its symmetry is wrong. Instead $3d_{xz}$ orbital on S is used to make the second π bond with $2p_z$ orbital on the second O atom. Although, it is surprising that both π bonds have the same energy.

[c] Sulphur Trioxide SO₂

It is the anhydride of H_2SO_4 and is solid at room temperature. It has three forms :

In gaseous state, SO₃ has a planar triangular structure involving sp² hybrid sulphur atom. The lone pair of sulphur atom forms coordinate bond (σ). Therefore, bond angle is exactly 120°. Solid SO₃ possesses either cyclic trimer (α -form) or infinite helical chains (β -form).

Note: Of the three forms: α -SO₃ is most stable.

$$\alpha - SO_3 \xrightarrow{<25^{\circ}C} \beta - SO_3 \xrightarrow{dry} \gamma - SO_3$$

Preparation:

1. It is manufactured on a huge scale by the Contact Process. Practically all of it is converted to H₂SO₄ in the same process:

$$2SO_2 + O_2 \xrightarrow{Pt/V_2O_5} 2SO_3$$

2. $\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3} \xrightarrow{\Delta} \operatorname{Fe}_{2}\operatorname{O}_{3} + 3\operatorname{SO}_{3}$

Chemical Properties:

1.
$$2SO_3 \xrightarrow{1000^{\circ}C} 2SO_2 + O_2$$

It is used to prepare oleum (mainly pyrosulphuric acid $H_2S_2O_7$)

$$\begin{array}{ccc} SO_3(g) + H_2SO_4 & \longrightarrow & H_2S_2O_7 \\ & & \text{oleum/fuming sulphuric acid} \end{array}$$

3. SO₃ is used to make sulphamic acid NH₂SO₃H (the only strong acid that can exist as a solid at room temperature).

$$NH_2CONH_2 + SO_3 + H_2SO_4 \longrightarrow 2 NH_2SO_3H + CO_2$$
Urea Sulphamic acid

[d] Oxo Acids of Sulphur:

Oxo - acids of sulphur ending in - ous have S in the oxidation state (+IV) and form salts ending in - ite. Acid ending in -ic have S in the oxidation state (+VI) and form salts ending in -ate. Four main series exist which are:

I Sulphurous Acid Series:

The most important acid in this series is sulphurous acid (H₂SO₃):

Preparation:

It is only known in solution (like carbonic acid) and as discussed SO₂ solution in water gives 1% H₂SO₃.

$$SO_2 + H_2O \Longrightarrow H_2SO_3$$

Chemical Properties of SO_3^{2-} ion :

1. H_2SO_3 being dibasic forms salt of bisulphites (HSO_3^-) and sulphites (SO_3^{2-}). HSO_3^- however undergoes internal dehydration to form $S_2O_5^{2-}$ ion.

$$2 \text{HSO}_3^- \xrightarrow{\text{heat}} S_2 O_5^{2-} + H_2 O$$
disulphite

2. S(+IV) in SO_3^- and HSO_3^- is a moderately strong reducing agent and forms sulphates on oxidation.

$$SO_3^{2-} + H_2O_2 \longrightarrow SO_4^{2-} + H_2O$$

 $H_2SO_3 + H_2O + 2FeCl_3 \longrightarrow H_2SO_4 + 2FeCl_2 + 2KCl_3$

while with sulphur, sulphites form thiosulphates:

$$SO_3^{2-} + S \xrightarrow{OH^-} S_2O_3^{2-}$$
thiosulphate

Sulphites and hydrogen sulphites liberates SO₂ on treatment with dilute acids

$$SO_3^{2-}$$
 (or HSO_3^-) $\xrightarrow{H^+(dil)}$ $SO_2 \uparrow$

3. SO_3^{2-} acts as an oxidising agent with a strong RA like H_2S .

$$SO_3^{2-} + 2S^{2-} + 6H^+ \longrightarrow 3S \downarrow + 3H_2O$$

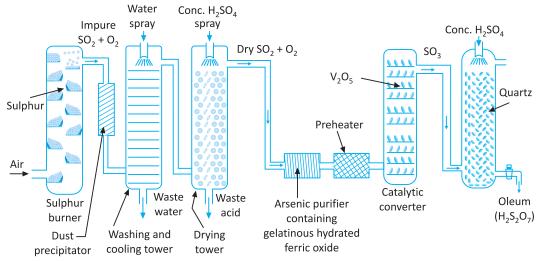
II Sulphuric Acid Series:

(i) Sulphuric acid [oil of Vitriol] H₂SO₄:

 H_2SO_4 is the most important acid used in the chemical industry. It is a colourless syrupy liquid with boiling point 338°C and freezes into crystals at 10.5°C. It is strongly hydrogen bonded.

Preparation

In ancient days it was prepared from ferrous sulphate (Green vitriol) and hence called Oil of Vitriol.


$$\begin{array}{c} 2(\text{FeSO}_4 \;.\, 7\,\text{H}_2\text{O}) \xrightarrow{\quad \text{heat} \quad} \text{Fe}_2\text{O}_3 \;+\, \text{SO}_2 \;+\, 13\,\text{H}_2\text{O} \;+\, \text{H}_2\text{SO}_4 \\ \text{green vitriol} \end{array}$$

2. Lead Chamber Process

Was used to manufacture H_2SO_4 industrially but the process is now obsolete as it only produced 78% H_2SO_4 . NO_2 is used as a homogeneous catalyst to oxidise SO_2 in the presence of water. NO produced combines with air to produce NO_2 which is reused. Thus, NO and NO_2 act as oxygen carriers

3. Contact Process:

It is the most important and widely used commercial process for the manufacture of H₂SO₄.

Flow diagram for the manufacture of sulphuric acid

- (i) SO₂ is first collected from burning of sulphur or sulphide ores.
- (ii) SO_2 is then oxidised.

$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$$

The forward reaction is exothermic and is favoured by low temperature, high pressure and excess of oxygen. A catalyst (activated V_2O_5) is used to obtain a reasonable conversion. Earlier Pt gauze was used but due to high costs and its susceptibility to poisoning it has been replaced by V_2O_5 .

(iii) SO_3 is then passed into 98% H_2SO_4 forming pyrosulphuric acid ($H_2S_2O_7$) called oleum. Dilution of oleum with water gives concentrated H_2SO_4 (98%).

Chemical Properties:

1. H₂SO₄ due to its low volatility is used to manufacture more volatile acids.

$$2MX + H_2SO_4 \longrightarrow 2HX + H_2SO_4$$

(M = metal; X = F, Cl, NO₃)

2. H₂SO₄ is a powerful dehydrating agent especially for gases.

It dehydrates HNO₃ forming NO₂⁺

$$2H_2SO_4 + HNO_3 \longrightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$$

It removes elements of water from organic compounds.

$$2EtOH + H_2SO_4 \longrightarrow Et - O - Et + H_2SO_4 \cdot H_2O$$

 $(COOH)_2 + H_2SO_4 \longrightarrow CO + CO_2 + H_2SO_4 \cdot H_2O$

Note: H_2SO_4 mixes with water to evolve large amount of heat. If water is poured into concentrated acid, the heat evolved causes violent splashing. Thus to dilute strong acids like H_2SO_4 , acid is poured into water while stirring (not water into acid).

3. H_2SO_4 is a quite strong oxidising agent.

conc.
$$H_2SO_4 + Br^- \longrightarrow SO_2 + Br_2 + H_2O$$

2 conc. $H_2SO_4 + Cu \longrightarrow CuSO_4 + SO_2 + 2H_2O$
2 conc. $H_2SO_4 + C \longrightarrow CO_2 + 2SO_2 + 2H_2O$

4. Pure H₂SO₄ is a non-aqueous solvent and a sulphonating agent.

$$C_6H_6 + HO \cdot SO_3H \longrightarrow C_6H_5SO_2OH + H_2O$$

Benzene sulphonic acid

Uses:

- 1. The largest used is in making superphosphate fertilizer.
- 2. It is used in *Pickling* (removal of oxides from the surfaces of metals like Fe, Cu before electroplating or galvanising.
- 3. It is used as a dehydrating agent, oxidising agent and as strong acid.

(ii) Thiosulphuric acid H₂S₂O₃:

The free acid is unstable and decomposes in water into a mixture of S, H_2S , SO_2 and H_2SO_4 while the salts (thiosulphates) are stable. It forms large colourless hexagonal crystals, highly soluble in water. The most important thiosulphate is sodium thiosulphate ($Na_2S_2O_3$. SH_2O) also called hypo.

Preparation:

$$SO_3^{2-} + S \xrightarrow{\text{boiling}} S_2O_3^{2-}$$
Neutral/alkaline

Chemical Properties:

1. Hypo solutions are used for iodine titrations in volumetric analysis.

$$2 \text{ Na}_2 \text{S}_2 \text{O}_3 + \text{I}_2 \longrightarrow \text{Na}_2 \text{S}_4 \text{O}_6 + 2 \text{ NaI}$$
Sodium tetrathionate

In iodometric estimation O.A.'s like $CuSO_4$, $K_2Cr_2O_7$ are treated with KI which liberates I_2 which is determined by hypo as above.

$$2\text{CuSO}_4 + 4\text{KI} \longrightarrow 2\text{K}_2\text{SO}_4 + \text{Cu}_2\text{I}_2 + \text{I}_2$$

2. Na₂S₂O₃ is used to destroy excess Cl₂ on fabrics after they have been bleached and called as antichlor.

$$Na_2S_2O_3 + 4Cl_2 + 5H_2O \longrightarrow 2NaHSO_4 + 8HCl$$

This is also used to remove the taste from heavily chlorinated drinking water.

3. Hypo is used in photography for 'fixing' films and prints. It dissolves unreacted AgNO₃, AgBr salts.

$$Na_2S_2O_3 + AgBr \longrightarrow Ag_2S_2O_3 \downarrow \xrightarrow{+Na_2S_2O_3}$$
 soluble complexes $Na_3[Ag(S_2O_3)_2]$

Note: (a)
$$S + OH^{-} \longrightarrow S^{2-} + S_{2}O_{3}^{2-}$$

(b) $S + OH^{-} \longrightarrow S^{2-} + SO_{3}^{2-}$

(excess) $S^{2-} + SO_{3}^{2-}$
 $S^{2-} + SO_{3}^{2-}$
 $S^{2-} + SO_{3}^{2-}$
 $S^{2-} + SO_{3}^{2-}$

(III) Thionic Acid Series:

(IV) **Peroxo Acid Series**

They contain the peroxo linkage -O-O-.

IN-CHAPTER EXERCISE-B

l .	Write	equations	for	:

- **(a)** preparation of oxygen from:
- (i) KClO₃
- (ii) Ozone
- (iii) $Pb(NO_3)_2$

- **(b)** reaction of H_2O_2 with
- (i) acidified solution of $KMnO_A$
- (ii) aqueous HI.

2. State reasons for the following statements

- Statues coated with white lead on long exposure to atmosphere turn black and the original colour can be (a) restored on treatment with H_2O_2 .
- **(b)** Presence of water is avoided in the preparation of H_2O_2 from Na_2O_2 .
- Hydrogen peroxide acts as an oxidizing as well as a reducing agent. (c)
- **(***d***)** Ozone destroys mercury meniscus.
- A white turbidity is obtained by passing H_2S in aqueous solution of SO_2 . **(e)**
- **(f)** Conc. H_2SO_4 can't be used for drying up H_2S and NH_3 .
- Liquid oxygen sticks to the poles of a magnet but liquid nitrogen does not. **(g)**
- **(h)** SF_{6} is known but OF_{6} is not.
- 3. Describe the differences in structure between gaseous and solid SO_3 .
- 4. Which of nitric acid and sulphuric acid is the stronger Bronsted acid, i.e., which donates proton to the other?
- 5. How are the following gases detected?
 - (a) O_{2}
- **(b)** O_3
- H_2S (c)
- **(d)**

 SO_2

Choose the correct alternative. Only One choice is correct.

- 6. Hydrolysis of one mole of peroxodisulphuric acid produces?
 - **(A)** two moles of sulphuric acid
- **(B)** two moles of peroxomonosulphuric acid
- **(C)** one mole of sulphuric acid and one mole of peroxomonosulphuric acid
- **(D)** one mole of sulphuric acid, one mole of peroxomonosulphuric acid and one mole of hydrogen peroxide
- 7. Which of the following will not be oxidised by O_3 ?
 - **(A)** KI
- $KMnO_{\Lambda}$ **(B)**
- K_2MnO_A **(C)**
- $FeSO_{A}$

- 8. Sodium thiosulphate is prepared by:
 - **(A)** reducing Na_2SO_4 solution with H_2S
- **(B)**
- boiling Na₂SO₃ solution with S in alkaline medium
- **(C)** neutralising $H_2S_2O_3$ solution with NaOH
- **(D)** boiling Na_2SO_3 solution with S in acidic medium
- 9. Glucose on fermentation produces:
 - **(A)** CH_3OH
- **(B)** CO_2
- **(C)** CO
- H_2O